
KareCoder: A New Knowledge-Enriched Code Generation System
Tao Huang

Shandong Normal University, China
2022317095@stu.sdnu.edu.cn

Zhihong Sun
Shandong Normal University, China

2022021002@stu.sdnu.edu.cn

Zhi Jin∗
Peking University, China

zhijin@pku.edu.cn

Ge Li
Peking University, China

lige@pku.edu.cn

Chen Lyu∗†
Shandong Normal University, China

lvchen@sdnu.edu.cn

ABSTRACT
Large Language Models (LLMs) demonstrate proficiency in han-
dling fundamental programming problems but struggle with com-
plex programming in new types. The study presents KareCoder,
integrating programming knowledge into code generation. Initial
tests reveal KareCoder’s significant success in the Pass@1 metric
for complex competitive programming problems.

1 INTRODUCTION
Code generation has attracted academic and industrial attention.
The effectiveness is linked to the size of models, dependency on
vast <Text,Code> pairs and significant computational resources.
However, the transparency of the specific training data is often
lacking. Furthermore, current datasets like APPS [1] and MBPP [2],
are confronted with benchmark leakage [3] issues in LLMs.

To tackle the benchmark leakage, we createded CodeF dataset,
split into two part based on ChatGPT 3.5’s [4] training data cutoff,
September 2021. Using ChatGPT to generate code on the Simple,
Medium and Hard subsets of the two parts, the Pass@1 on CodeF
pre2021-9 reached 50.3%, 11.1% and 4.7%, respectively, while they
achieved 26.1%, 7.0% and 6.0% on CodeF post2021-9, the former part
exhibits an average relative improvement of 69.1% in the Pass@1
metrics over the latter. This highlights LLMs’ ability to learn from
exposed problems but still lack in learning problems that are novel.
Enhancing LLMs performance remains a challenge, we anticipate
that introducing contextual knowledge will prompt LLMs.

We introduce KareCoder, a tool to assist generating complex
code for programming problems involving the use of diverse algo-
rithms and data structures, similar to competition-level problems.
Initially, a dataset encompassing algorithms and data structures
tags and a Knowledge Library are constructed. KareCoder leverages
these to enhance LLMs’ planning and integrate knowledge. Subse-
quently, KareCoder amalgamates knowledge to generate step-by-
step prompts, guiding the final code generation. Initial evaluations
demonstrate KareCoder’s effectiveness.
∗Zhi Jin and Chen Lyu are the corresponding authors.
†This work was done when Chen Lyu was a visiting scholar at Peking University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04
https://doi.org/10.1145/3639478.3643076

2 DATASET AND KNOWLEDGE LIBRARY
2.1 CodeF Dataset
To avoid benchmark leakage[3] and incorporate programming
knowledge, we created CodeF. This dataset is informed by the
methodologies and insights gained from creating the TACO dataset
[5]. CodeF is annotated with algorithms and data structures tags
and problems release time tags, comprises 1,523 problems across
33 tags, 805 before and 718 after the September 2021 cutoff.

In data collection phase, considering anti-crawling measures and
the need of tags, we selected Codeforces. Additionally, We cleaned
the data by removing comments and duplicates and confirmed
accuracy with unit tests. During data processing stage, we divided
CodeF into two subsets: CodeF pre2021-9 and CodeF post2021-9
based on the September 2021 cutoff time for ChatGPT 3.5’s training
data. Furthermore, we conducted an analysis of both subsets to
verify and ensure their consistency, focusing on the distribution of
algorithms and data structures tags, average number of problems’s
tokens and tags.We categorized problems according to the difficulty,
delineating three subsets of difficulty: Simple, Medium and Hard.

2.2 Knowledge Library
To integrate knowledge into the model, we structured the Knowl-
edge Library around the 33 tags of CodeF as a useful supplement
to LLMs. We employed dictionary method for one-to-one match-
ing of tags and knowledge, e.g.“tag”: “knowledge”. We developed
three Knowledge Library versions: Knowledge Description, Knowl-
edge Pseudo-Code, and Knowledge Step of Pseudo-Code. In tests,
KareCoder with Knowledge Description performed best.

3 METHODOLOGY
As illustrated in Figure 1, we developed a ChatGPT-based tag gen-
erator preceding KareCoder to provide tags for problems lacking
them, essential for integrating knowledge into KareCoder. We eval-
uated the tag generator’s accuracy with Cohen’s Kappa and manual
evaluation methods. KareCoder operates in two phases: prompt en-
gineering stage and coding stage, eachwith tailored system prompts
and one-shot examples for improved efficiency and effectiveness.

3.1 Prompt Engineering Stage
In this phase, we designate ChatGPT as a prompt engineer that
matches problems with relevant content in the Knowledge Library
based on their tags. ChatGPT generates Knowledge-aware prompt
to guide the solution of the problem. Let 𝑄 represent a problem, 𝑃
as a Knowledge-aware prompt, 𝐾 stand for the Knowledge Library,
𝐾 ′ denote a knowledge description, and 𝑋 signify as example sets
for prompt generation, i.e., 𝑋 =

{〈
𝑄𝑥 , 𝐾

′
𝑥 , 𝑃𝑥

〉}𝑛
𝑥=1. Consequently,

270

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3643076
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643076&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Tao Huang, Zhihong Sun, Zhi Jin, Ge Li, and Chen Lyu

Knowledge
Prompt

Examples

Problem

Knowledge
Library

Solution
Examples

Problem

Knowledge
Prompt

1. Read t, the
number of test
cases.
2. Loop t times.

(more...)
7. Print the value
of count as the
output.
8. End the loop.

Prompt
Engineer Coder

Without Tag

With Tag

Problem KareCoder Codes

How to
solve the
problem？ Do we need these

knowledges?
How to complete
the code?

t=int(input())
for i in range(t):
 count=0
 (more...)
 print(count)

Prompt Code

Tag Generator

Figure 1: Overview of KareCoder.

the generation of knowledge-aware prompt is defined as:

𝑓 (𝑃 | 𝑄,𝐾,𝑋) ≜ 𝑓
(
𝑃 | 𝑄,𝐾 ′, 𝑋

)
·𝑚

(
𝐾 ′ | 𝑄,𝐾

)
(1)

Here, 𝑓 represents the generative task executed by ChatGPT,
and𝑚 symbolizes the task of knowledge matching.

3.2 Prompt Engineering Stage
In this stage, ChatGPT acts as the coder, reading and understand-
ing the problem and Knowledge-aware prompts from the Prompt
Engineer. Subsequently, ChatGPT proceeds to write the code. This
phase aims to transform natural language Step-by-Step prompts
into executable programs. Let𝑄 symbolize the problem, 𝑃 represent
the Knowledge-aware prompt, 𝐶 denote the generated code, and 𝑌
as a set of code generation examples, i.e., 𝑌 =

{〈
𝑄𝑦, 𝑃𝑦,𝐶𝑦

〉}𝑛
𝑦=1.

The prompt-based code generation is defined as:

𝑓 (𝐶 | 𝑄, 𝑃,𝑌) (2)

The Knowledge-aware Code Generation can be encapsulated as:

𝑓 (𝐶 | 𝑄,𝐾) ≜ 𝑓 (𝐶 | 𝑄, 𝑃,𝑌)·︸ ︷︷ ︸
Generate-Code

𝑓 (𝑃 | Q,K′,X)·︸ ︷︷ ︸
Generate-Prompt

𝑚(𝐾 ′ | 𝑄,𝐾)︸ ︷︷ ︸
Match-Knowledge

(3)

4 EVALUATION
We assessed KareCoder on CodeF post2021-9 by using “gpt-3.5-
turbo-0613” ChatGPT. We conducted comparisons with ChatGPT
[4], Self-plan [6] and SCoT [7] to validate KareCoder’s superiority
by Pass@k metric. After extensive tests, we choosed 1-shot, tem-
perature=1, and top_p=1 configuration, generating five solutions
for each problem to compare the Pass@1, Pass@3 and Pass@5 met-
rics. Notably, Pass@1 is especially important as it aligns more with
practical application needs.

Table 1 presents results from experiments on CodeF post2021-9
dataset and its Simple, Medium, and Hard subsets. These experi-
ments validate the efficacy of incorporating programming knowl-
edge. KareCoder outperformed ChatGPT, Self-plan, and SCoT in
Pass@1 due to integrating algorithms and data structures knowl-
edge, enhancing the abilities of LLMs. However, in Pass@3 and
Pass@5, Self-plan, SCoT, and KareCoder didn’t surpass ChatGPT, as
these methods’ prompt-based approach limits solutions’ diversity.

Table 1: Performance Comparision

Method Simple Medium

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

ChatGPT 26.1 39.8 46.2 7.0 15.0 19.5
ChatGPT+Self-Plan 28.5 31.8 33.6 5.1 7.6 8.4
ChatGPT+SCoT 19.1 24.3 25.2 6.4 11.3 13.1
ChatGPT+KareCoder 30.5 38.8 41.8 10.5 14.4 16.4

Method Hard ALL

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

ChatGPT 6.0 10.4 12.4 12.9 22.4 26.9
ChatGPT+Self-Plan 7.3 8.6 9.0 14.2 17.3 18.3
ChatGPT+SCoT 7.7 11.6 12.4 11.2 14.2 15.0
ChatGPT+KareCoder 7.4 11.1 12.5 15.9 19.8 21.3

5 CONCLUSION AND FUTUREWORK
The paper presents KareCoder, a system for integrating program-
ming knowledge in code generation. We developed CodeF dataset
for the evaluation of LLMs and a Knowledge Library encompassing
algorithms and data structures knowledge. Our research explored
how to embed knowledge into code. Looking ahead, our future
endeavors will focus on new knowledge integration methods and
enhance the Knowledge Library.

REFERENCES
[1] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,

Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring
coding challenge competence with apps. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

[3] Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen,
Yankai Lin, Ji-Rong Wen, and Jiawei Han. Don’t make your llm an evaluation
benchmark cheater. arXiv preprint arXiv:2311.01964, 2023.

[4] OpenAI. Chatgpt. https://OpenAI.com/chatgpt, 2023
[5] Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang

Liu, Zhi Jin, and Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv
preprint arXiv:2312.14852, 2023.

[6] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning
code generation with large language model. arXiv preprint arXiv:2303.06689, 2023.

[7] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for
code generation. arXiv preprint arXiv:2305.06599, 2023.

271

https://OpenAI.com/chatgpt

